Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Commun Signal ; 22(1): 183, 2024 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-38491517

RESUMO

PURPOSE: Prostatitis is a highly prevalent condition that seriously affects men's physical and mental health. Although epidemiological investigations have provided evidence of a correlation between insufficient sleep and prostatitis, the pathogenesis of prostatitis remains unclear. We sought to identify the underlying mechanism involved and identify a promising therapeutic target. METHODS: Sleep deprivation (SD) was utilized to establish a mouse model of insufficient sleep in a special device. Prostatitis was observed at different time points post-SD. The degree of prostatitis was evaluated by pathological section and behavioural tests. Using immunofluorescence, western blot, and proteomic analyses, the underlying mechanism of SD-related prostatitis was investigated, and the development and therapeutic target of prostatitis were elucidated. RESULTS: SD, as an initial pathological trigger, resulted in a reduction in dihydrotestosterone and melatonin levels. Proteomic analysis revealed that the cGAS-STING pathway may play a significant role in inducing prostatitis. The subsequent results illustrated that the dual reduction in dihydrotestosterone and melatonin led to an accumulation of reactive oxygen species and the release of mitochondrial DNA (mt-DNA). The accumulation of mt-DNA activated the cGAS-STING pathway, which recruited inflammatory cells into the prostatic stroma through the secretion of interferon-ß. Consequently, an inflammatory microenvironment was formed, ultimately promoting the development of prostatitis. Notably, mice with SD-induced prostatitis gradually recovered to a normal state within 7 days of recovery sleep. However, after being subjected to SD again, these mice tended to have a more pronounced manifestation of prostatitis within a shorter timeframe, which suggested that prostatitis is prone to relapse. CONCLUSIONS: The cGAS-STING pathway activated by dual deficiency of dihydrotestosterone and melatonin plays a comprehensive inflammatory role in SD-related prostatitis. This research provides valuable insights into the pathogenesis, therapeutic targets, and prevention strategies of prostatitis.


Assuntos
Melatonina , Prostatite , Humanos , Masculino , Animais , Camundongos , Privação do Sono/complicações , Di-Hidrotestosterona/farmacologia , Proteômica , Sono , DNA Mitocondrial , Nucleotidiltransferases
2.
Int Immunopharmacol ; 130: 111682, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38394885

RESUMO

Chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS) is a common inflammatory immune disease of the urogenital system. High glucose intake is considered to be a potential promoter of autoimmune diseases. However, the influence of high glucose intake on CP/CPPS is unknown. This research aimed to explore the influences of high glucose intake on experimental autoimmune prostatitis (EAP), a valid animal model of CP/CPPS, and the underlying mechanism. NOD mice received 20% glucose water or normal water treatment during EAP induction. EAP severity and Th17 cell responses were evaluated. Then, we explored the effects of an IL-17A neutralizing antibody, an inhibitor of TGF-ß, the reactive oxygen species (ROS) inhibitor NAC, and the mitochondrial ROS (mtROS) antioxidant MitoQ on glucose-fed EAP mice. The results demonstrated that high glucose intake aggravated EAP severity and promoted Th17 cell generation, which could be ameliorated by the neutralization of IL-17A. In vitro experiments showed that high dextrose concentrations promoted Th17 cell differentiation through mtROS-dependent TGF-ß activation. Treatment with TGF-ß blockade, NAC, or MitoQ suppressed Th17 cell generation both in vivo and in vitro, resulting in the amelioration of EAP manifestations caused by high glucose intake. This study revealed that high glucose intake exacerbates EAP through mtROS-dependent TGF-ß activation-mediated Th17 differentiation. Our results may provide insights into the molecular mechanisms underlying the detrimental effects of an environmental factor, such as high glucose intake, on CP/CPPS.


Assuntos
Doenças Autoimunes , Prostatite , Masculino , Humanos , Camundongos , Animais , Prostatite/induzido quimicamente , Prostatite/tratamento farmacológico , Espécies Reativas de Oxigênio , Interleucina-17 , Células Th17 , Camundongos Endogâmicos NOD , Diferenciação Celular , Fator de Crescimento Transformador beta , Glucose , Modelos Animais de Doenças
3.
Andrology ; 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38230991

RESUMO

BACKGROUND: Premature ejaculation (PE) is the most prevalent sexual dysfunction among men. Eejaculation involves a complex nervous mechanism in which the ejaculatory centers play a key role in modulating sperm emission. Although treatment possibilities span from psychotherapy to pharmacological approaches, results show inconsistent efficacy. In this context, the emergence of repetitive transcranial magnetic stimulation (rTMS) as a non-invasive neuromodulatory approach represents a compelling avenue for potential therapeutic exploration. OBJECTIVE: To investigate whether high-frequency transcranial magnetic stimulation can modulate the ejaculatory behavior of rats with rapid ejaculation by altering neurotransmitter levels and neuroplasticity in the hippocampus. METHODS: Rats have been screened for rapid ejaculation by observing behavioral indices of mating, and subsequently divided into two groups. The intervention group was administered with a 10 Hz rTMS stimulation, whereas the control group received a sham procedure. Upon the delivery of rTMS, we investigated ejaculation latency (EL), the hippocampal 5-hydroxytryptamine (5-HT) concentration, brain-derived neurotrophic factor (BDNF), synaptophysin (SYN), and postsynaptic density protein 95 (PSD95) expressions, as well as BDNF-receptor tyrosine kinase receptor B (TrkB) pathway upregulation. RESULTS: After 14 days, EL was increased in the intervention group compared with the control group. 5-HT concentration in the hippocampal region was increased, and high-frequency rTMS activated the BDNF and TrkB pathways, including phosphorylation of cAMP response element-binding protein (CREB), and upregulated the transcription and protein expression of SYN, and PSD95. CONCLUSION: RTMS upregulates BDNF, SYN, and PSD95 expression through activation of the BDNF-TrkB pathway and increases brain 5-hydroxytryptamine thereby regulating neuroplasticity and improving ejaculation.

4.
Andrology ; 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38095276

RESUMO

OBJECTIVE: To investigate the mechanism of the CXCL10/CXCR3 axis regulating Th1 cell differentiation and migration through the PI3K/AKT pathway in chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS). METHODS: Experimental autoimmune prostatitis (EAP) model, a well-described and validated animal model of CP/CPPS, was used in our study. After treatment with CXCL10, the severity of EAP and Th1 cell proportion were respectively measured by HE stains, immunohistochemistry, and flow cytometry. Then, the protein expression of the PI3K/AKT pathway in CXCL10/CXCR3-regulated Th1 cell differentiation and migration was evaluated by western blotting. Additionally, by the CXCR3 antagonist AMG487 and the PI3K inhibitor LY294002 applications, the effects of CXCL10/CXCR3 through PI3K/AKT pathway on the Th1 cell differentiation and migration were further assessed. RESULTS: The EAP model was successfully built. CXCL10 increased the proportion of Th1 cells in EAP mice, accompanied by upregulation of the PI3K/AKT pathway. Additionally, the PI3K/AKT pathway was found to be involved in CXCL10/CXCR3 axis-mediated Th1 cell differentiation and migration. CONCLUSIONS: Our investigations indicate that the CXCL10/CXCR3 axis regulates Th1 cell differentiation and migration in EAP through the PI3K/AKT pathway, which provides a new perspective on the immunological mechanisms of CP/CPPS.

5.
Discov Oncol ; 14(1): 232, 2023 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-38103068

RESUMO

BACKGROUND: Bladder cancer (BLCA) is a prevalent urinary system malignancy. Understanding the interplay of immunological and metabolic genes in BLCA is crucial for prognosis and treatment. METHODS: Immune/metabolism genes were extracted, their expression profiles analyzed. NMF clustering found prognostic genes. Immunocyte infiltration and tumor microenvironment were examined. Risk prognostic signature using Cox/LASSO methods was developed. Immunological Microenvironment and functional enrichment analysis explored. Immunotherapy response and somatic mutations evaluated. RT-qPCR validated gene expression. RESULTS: We investigated these genes in 614 BLCA samples, identifying relevant prognostic genes. We developed a predictive feature and signature comprising 7 genes (POLE2, AHNAK, SHMT2, NR2F1, TFRC, OAS1, CHKB). This immune and metabolism-related gene (IMRG) signature showed superior predictive performance across multiple datasets and was independent of clinical indicators. Immunotherapy response and immune cell infiltration correlated with the risk score. Functional enrichment analysis revealed distinct biological pathways between low- and high-risk groups. The signature demonstrated higher prediction accuracy than other signatures. qRT-PCR confirmed differential gene expression and immunotherapy response. CONCLUSIONS: The model in our work is a novel assessment tool to measure immunotherapy's effectiveness and anticipate BLCA patients' prognosis, offering new avenues for immunological biomarkers and targeted treatments.

6.
Small ; 19(22): e2207077, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36861297

RESUMO

Therapeutic efficacy for prostate cancer is highly restricted by insufficient drug accumulation and the resistance to apoptosis and immunogenic cell death (ICD). Although enhanced permeability and retention (EPR) effect of magnetic nanomaterials could benefit from external magnetic field, it falls off rapidly with increased distance from magnet surface. Considering the deep location of prostate in pelvis, the improvement of EPR effect by external magnetic field is limited. In addition, apoptosis resistance and cGAS-STING pathway inhibition-related immunotherapy resistance are major obstacles to conventional therapy. Herein, the magnetic PEGylated manganese-zinc ferrite nanocrystals (PMZFNs) are designed. Instead of providing external magnet, micromagnets into tumor tissues are intratumorally implanted to actively attract and retain intravenously-injected PMZFNs. As a result, PMZFNs accumulate in prostate cancer with high efficacy, depending on the established internal magnetic field, which subsequently elicit potent ferroptosis and the activation of cGAS-STING pathway. Ferroptosis not only directly suppresses prostate cancer but also triggers burst release of cancer-associated antigens and consequently initiates ICD against prostate cancer, where activated cGAS-STING pathway further amplifies the efficacy of ICD by generating interferon-ß. Collectively, the intratumorally implanted micromagnets confer a durable EPR effect of PMZFNs, which eventually achieve the synergetic tumoricidal efficacy with negligible systemic toxicity.


Assuntos
Nanopartículas , Neoplasias , Neoplasias da Próstata , Masculino , Humanos , Próstata , Morte Celular Imunogênica , Neoplasias da Próstata/tratamento farmacológico , Imunoterapia , Polietilenoglicóis
7.
Cells ; 11(23)2022 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-36497046

RESUMO

Adrenocortical carcinoma (ACC) is a malignancy of the endocrine system. We collected clinical and pathological features, genomic mutations, DNA methylation profiles, and mRNA, lncRNA, microRNA, and somatic mutations in ACC patients from the TCGA, GSE19750, GSE33371, and GSE49278 cohorts. Based on the MOVICS algorithm, the patients were divided into ACC1-3 subtypes by comprehensive multi-omics data analysis. We found that immune-related pathways were more activated, and drug metabolism pathways were enriched in ACC1 subtype patients. Furthermore, ACC1 patients were sensitive to PD-1 immunotherapy and had the lowest sensitivity to chemotherapeutic drugs. Patients with the ACC2 subtype had the worst survival prognosis and the highest tumor-mutation rate. Meanwhile, cell-cycle-related pathways, amino-acid-synthesis pathways, and immunosuppressive cells were enriched in ACC2 patients. Steroid and cholesterol biosynthetic pathways were enriched in patients with the ACC3 subtype. DNA-repair-related pathways were enriched in subtypes ACC2 and ACC3. The sensitivity of the ACC2 subtype to cisplatin, doxorubicin, gemcitabine, and etoposide was better than that of the other two subtypes. For 5-fluorouracil, there was no significant difference in sensitivity to paclitaxel between the three groups. A comprehensive analysis of multi-omics data will provide new clues for the prognosis and treatment of patients with ACC.


Assuntos
Neoplasias do Córtex Suprarrenal , Carcinoma Adrenocortical , Humanos , Carcinoma Adrenocortical/tratamento farmacológico , Carcinoma Adrenocortical/genética , Multiômica , Cisplatino/uso terapêutico , Neoplasias do Córtex Suprarrenal/tratamento farmacológico , Neoplasias do Córtex Suprarrenal/genética , Neoplasias do Córtex Suprarrenal/patologia , Análise de Dados
8.
Front Public Health ; 10: 978338, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36299743

RESUMO

Environmental pollution sources may play a key role in the pathogenesis of nephrolithiasis, although the link between environmental aldehyde exposure and the incidence of nephrolithiasis is unclear. The researchers in this study set out to see whether adult kidney stone formation was linked to environmental aldehydes. We examined data from 10,175 adult participants over the age of 20 who took part in the 2013-2014 National Health and Nutrition Examination Survey (NHANES), which was a cross-sectional research. A logistic regression model was employed in this work to examine the relationship between aldehyde exposure and kidney stones, machine learning was utilized to predict the connection of different parameters with the development of kidney stones, and a subgroup analysis was performed to identify sensitive groups. After controlling for all confounding variables, the results revealed that isopentanaldehyde, benzaldehyde, and hexanaldehyde were risk factors for kidney stone formation, with odds ratio (OR) of 2.47, 1.12, and 1.17, respectively, and 95 percent confidence intervals (95% CI) of 1.15-5.34, 1.02-1.22, and 1.00-1.36. Kidney stones may be a result of long-term exposure to aldehydes, which may cause them to form. Environmental pollution-related aldehyde exposure might give a novel notion and direction for future study into the process of kidney stone production, even if the cause is yet unknown.


Assuntos
Benzaldeídos , Cálculos Renais , Adulto , Humanos , Inquéritos Nutricionais , Estudos Transversais , Cálculos Renais/epidemiologia , Cálculos Renais/etiologia , Aldeídos/efeitos adversos
9.
Contrast Media Mol Imaging ; 2022: 1259009, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36034203

RESUMO

Our study intended to investigate five cytokine gene single nucleotide polymorphisms (SNPs) and their associations with prostate cancer risk. Genotypes of five cytokine gene SNPs were detected by MassARRAY for blood samples from a group of patients with prostate cancer (n = 90) and a control group (n = 140) in central China. The differences in tumor clinical stages, Gleason scores, and PSA values in patients with prostate cancer were also investigated. The frequencies of the five cytokine gene SNPs (L-1ß rs16944, IL-4 rs2070874, IL-4rs2227284, IL-16 rs7175701, and IL-16 rs11556218) genotypes were not found to be significantly mutated in prostate cancer patients compared with the control group. In addition, for five cytokine gene SNPs genotypic comparisons, patients with different Gleason scores, clinical stages, and PSA values were grouped into two subgroups. There was also no statistically significant association in all these subgroups. Our study suggests that cytokine gene polymorphisms may not be a risk factor for prostate cancer in a central Chinese population. Nevertheless, more large-scale studies on the Chinese population are necessary to examine our conclusions. The discovery of cytokine gene polymorphisms related to prostate cancer could update our understanding of the etiology and improve our knowledge of the early detection, diagnosis, and treatment of prostate cancer.


Assuntos
Predisposição Genética para Doença , Neoplasias da Próstata , Estudos de Casos e Controles , Humanos , Interleucina-16 , Masculino , Polimorfismo de Nucleotídeo Único , Antígeno Prostático Específico
10.
Front Immunol ; 13: 915218, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35860242

RESUMO

Chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS) is a very common urological disorder and has been gradually regarded as an immune-mediated disease. Multiple studies have indicated that the gut microflora plays a pivotal part in immune homeostasis and autoimmune disorder development. However, whether the gut microflora affects the CP/CPPS, and the underlying mechanism behind them remain unclear. Here, we built an experimental autoimmune prostatitis (EAP) mouse model by subcutaneous immunity and identified that its Th17/Treg frequency was imbalanced. Using fecal 16s rRNA sequencing and untargeted/targeted metabolomics, we discovered that the diversity and relative abundance of gut microflora and their metabolites were obviously different between the control and the EAP group. Propionic acid, a kind of short-chain fatty acid (SCFA), was decreased in EAP mice compared to that in controls, and supplementation with propionic acid reduced susceptibility to EAP and corrected the imbalance of Th17/Treg cell differentiation in vivo and in vitro. Furthermore, SCFA receptor G-protein-coupled receptor 43 and intracellular histone deacetylase 6 regulated by propionic acid in Th17 and Treg cells were also evaluated. Lastly, we observed that fecal transplantation from EAP mice induced the decrease of Treg cell frequency in recipient mice. Our data showed that gut dysbiosis contributed to a Th17/Treg differentiation imbalance in EAP via the decrease of metabolite propionic acid and provided valuable immunological groundwork for further intervention in immunologic derangement of CP/CPPS by targeting propionic acid.


Assuntos
Dor Crônica , Microbioma Gastrointestinal , Prostatite , Animais , Diferenciação Celular , Humanos , Masculino , Camundongos , Dor Pélvica/metabolismo , Propionatos/farmacologia , RNA Ribossômico 16S , Linfócitos T Reguladores/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...